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ABSTRACT

A finite difference technique utilizing an irregular-triangular mesh and

the Wielandt inverse-iteration method is used to compute normal mode slosh-

ing in spheroidal tanks of eccentricities ranging from zero to 0.8 under

zero and low gravitational conditions for a contact angle of 5 degrees. The

results are used to calculate, using a finite Fourier series expansion,

liquid response to sinusoidal, square-wave, and periodic pulse lateral per-

turbing accelerations. Reduction of either liquid volume or gravity level

decreases the fundamental sloshing frequency.

ix
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SUMMARY

The small-amplitude lateral sloshing of an incompressible inviscid liquid

partially filling a spheroidal tank, as determined by surface and gravita-

tional forces, is studied for zero- and low-g conditions. The problem is

formulated in a curvilinear coordinate system parallel to the equilibrium

free-surface. The first few normal modes of oscillation having one nodal

diameter and the corresponding eigenfrequencies are calculated numerically

for a liquid-tank contact angle of 5 degrees. These modes are computed by a

finite difference method using an irregular triangular mesh and a Wielandt

inverse iteration technique. The forced response to lateral perturbing

accelerations is developed in terms of the calculated modes using a finite

Fourier analysis. The calculations are carried out for tanks of eccentricity

0._ 0.5_ 0.68, and 0.8 and for liquid volumes ranging from 1/8 to 7/8 of a

full tank. The (dimensionless) Bond number B_ = pg_a2/_ (p, g_, a_ and

are the liquid density, steady axial acceleration, tank semi-major axis, and

surface tension) ranges from zero to lO0. At the lower values of B _ the

equilibrium meniscus may leave dry spots at both the bottom and the top of

the tank.

General conclusions include: (a) The fundamental sloshing frequency is

generally an increasing function of Bond number B and liquid volume. The

fundamental sloshing frequency is zero or near zero for B = 0 when the

equilibrium free-surface intersects the tank wall in a single circle and is

generally positive for B = 0 when the tank wall and free-surface intersect

in two circles. (b) Computation of the response to lateral perturbing accel-

erations can be effected by use of the finite Fourier analysis, but, where

appropriate, engineering computations may be more easily made using a spring-

mass analog for normal mode liquid sloshing. Parameters for this analog are

presented for first mode sloshing. These are adequate for engineering compu-

tations when the first term is dominant in the Fourier series for the forced

motion. (c) The irregular-triangular, finite-difference, Wielandt inverse-

iteration scheme appears adaptable for this type of problem in a wide variety

of tank shapes when currently available digital computers are fully utilized.



INTRODUCTION

In the recent past, considerable attention has been given to the sloshing of

liquids in containers of the shapes used in modern propulsion systems, such

as cylindrical containers with spheroidal ends (sometimes inverted) or simple

spheroidal ones. Interest has focused more recently on sloshing under low-g

conditions, where surface tension effects can dominate the behavior of the

liquid.

There now exists a large body of literature concerning sloshing under condi-
tions where surface tension is not important. (1) However, comparatively
little work has been done on investigating low-g sloshing, (2-8) and muchof

it has been limited to conditions in which the effects of surface tension

are slight so that gravitational forces still essentially dominate. _3'7)
t _

The object of this study is to investigate linearized low-gravity sloshing in

spheroidal tanks of zero to moderate eccentricity. Specific objectives in-

clude: (a) Determination of the normal lateral sloshing modes and frequencies

as a function of the axial acceleration level, the surface tension and density

of the liquid, and the liquid volume in the tank. (b) Determination of the

forced response of the liquid to lateral perturbing accelerations. (c) Compu-

tation of the lateral forces and moments acting on the tank.

The linear analysis employed here describes small amplitude oscillations of

the liquid about its equilibrium shape and neglects the influence of viscosity.

(Experiments have shown that viscosity can be safely neglected for determining

the natural frequency of even quite small scale models. _2'3'7)) It is assumed

t %

that the fluid properties and thecontact angle of the liquid are constant and

do not vary dynamically.
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The frame of reference used for this stndy is fixed to the container as shown

in Figure I. The liquid in tanks of a space vehicle will not be acted upon

directly by a latenal force that acts on the vehicle, but rather acted upon

indirectly by the moving walls of the tank. For convenience, however, the

tank is considered fixed and the liquid as being influenced directly by a

lateral perturbing acceleration in the tank-fixed coordinate system.

The mathematical problem describing the sloshing is a linear boundary value

problem. In the tank-fixed coordinate system it can be assumed that the liquid

motion is irrotational so that the governing equation is Laplace's equation,

the equation of continuity for an ideal liquid. The solution of Laplace's

equation in the domain occupied by the liquid must satisfy a zero normal velo-

city boundary condition at the tank walls and dynamical and kinematic conditions

at the free-surface. The dynamical condition is obtained from the unsteady

form of the Bernoulli equation and the kinematic condition relates the velocity

potential to the motion of the free-surface. The motion of the free surface

is constrained to preserve the contact angle constant at the tank wall.

Previous analysis related to sloshing in spheroidal tanks has been limited to

the simpler high-g (zero surface tension) case. It was found, even for this

case, that the use of approximate methods is required, in general, for solving

the governing equations.(9,10,11) In the more complex low-g case studied here,

approximate methods are also required. To solve the boundary value problem,

an extension of the numerical technique successfully applied previously to

low-g sloshing in hemispherically bottomed cylindrical tanks is'used.(4,5)

The numerical solution of the sloshing problem is carried out in three stages:

(a) The equilibrium meniscus shape is computed for each combination of Bond

number (dimensionless ratio of gravitational to surface tension forces) and

liquid volume. (b) A suitable finite difference mesh is constructed by

mapping a cross section of the liquid conformally onto the unit circle, by

constructing a mesh within the circular domain, and by mapping this mesh

conformally back into the liquid cross section. (c) The eigenfrequencies and

eigenfunctions of the discretized system of equations are determined. The

forced response to lateral perturbing accelerations, as well as other engi-

neering data, is then developed in terms of the solutions.

LOCKHEED MISSILES & SPACE COMPANY



PROBL_4 FORMULATION

In this section the mathematical formulation for lateral sloshing in a

spheroidal container is presented. It closely follows that presented pre-

viously for a hemispherically bottomed cylindrical container and, wherever

e corn arlson (4' 5)*possible, similar notation is used to facilitat p " . A

new formulation is required primarily because the one used earlier is based

upon representing the free surface as a single valued function of the radial

coordinate in circular cylindrical coordinates, a representation that is

not general enough for a spheroidal container. The possibility of repre-

senting a free surface double-valued in those coordinates is allowed for

here by employing a surface polar normal coordinate system to express the

free-surface boundary conditions.

Surface Polar Normal Coordinates

Let the unit vectors associated with the coordinate directions in circular

cylindrical coordinates (r,e,z) be denoted by the triple [_r,_e,_], and let

the equations of a meridian of the equilibrium free-surface be

r = RCs) and z = ZCs) ,

where the parameter s is arc length along the curve measured from the

lowest point on the surface (see Figure 1).** Then the position vector of

a point on the equilibrium free-surface, a surface of revolution about the

z-axis, can be represented by

@

Reference numbers are superscripted in parentheses.

Variables appearing in this report are dimensionless, unless otherwise

stated. They are defined in the Nomenclature List, Appendix A, where the

relationships to the physical dimensioned variables are given.

4
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: + z(s)_k (i)

The surface polar normal coordinates are defined relative to the equilibrium

free-surface by taking e and e to be unit vectors tangent and normal
--s --n

to a meridian. Let e point from the liquid into the gas and e point in
--n --s

the direction of increasing s so that the unit vectors [_s,_e_n ] form a

right-handed triple. This triple is associated with the coordinate directions

in surface polar normal coordinates (s,e_), where 1] is the distance of a

point from the equilibrium free-surface along e . In terms of circular
--n

cylindrical coordinates the unit vectors are

e = R e + Z k and e = - Z e + R k
--s s --r s -- --n s --r s --

and conversely (2)

@
e = R e - Z e and k = Z e + R e .
--r s --s S --n -- S --S S --n

As a sphere of radius _ rolls over the equilibrium free-surface, the center

generates a "parallel" surface. These parallel surfaces have no self-inter-

sections so long as

where

1]< min (RI, E2)

R 1 = [ZssR s - ZsRss ]-l and R2 = [R/Zs]-I

(3)

are the principal radii of curvature of the equilibrium free-surface. Con-

sequently; a perturbed free-surface can be described in surface polar normal

coordinates by the relation

I]: H(s,e;t) (4)

The subscripts on R and Z denote differentiation. Throughout the

paper such notation is used to denote differentiation of a dependent

variable with respect to an independent variable, when the context makes

it clear that such differentiation is intended.
•
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provided that departure from the equilibrium surface

so that

H < min .(RI,R2) •max

_=0 is small enough

(5)

(The relation (5) is not a significant restriction for the small amplitude

sloshing problems considered here.) Let _ be the angle from e to e--r --s

_ _ = sin# and R = cos_, then one(alternately from k to en) so that Zs s

obtains directly that the position vector of a point can be described in

surface polar normal coordinates by

r =_r(s,e,_) = (R - _Z s) e + (Z + _R s) k ; (6)
_r

when _ = H(s_e;t) the point lies on the perturbed surface; when _ = 0 the

point lies on the equilibrium surface and (6) reduces to (1).

The Governin5 Equation

The liquid is ass_ed to be incompressible and inviscid and its motion Jr-

rotational so that the velocity potential satisfies Laplace's equation

+ i + = 0 (7)_rr _ r zz
r

within the liquid, subject to the boundary condition on the container wall

that the normal velocity be zero,

= o (8)
Bn

on w. The boundary conditions on the free-surface present the major

complexity and are derived in the next parts of this section.

Free-Surface Boundary Conditions

Bernoulli Equation. One of the free-surface boundary conditions is obtained

from the nonsteady state Bernoulli equation, which in surface polar normal

6

LOCKHEED MISSILES & SPACE COMPANY



coordinates takes the form

I+B[llv___xrll2p + Bff(Z+H_s) - Btr(R-HZs) cose + (l+Bff) Ct + --2-- -- --

+ (_.__)2_ii__i12llrIl2]: f(t)

(9)

on _ : H(s,e;t),

that the velocity

where the sign of the velocity potential

v is

is chosen so

v = V_ = _ e + _i _e + 9 k . (lO)-- -- l_-r r z--

Equations (9) and (i0) are for fluid motion relative to the container in a

coordinate system fixed to the container. The choice of the function on the

right hand side of (9) is arbitrary and, for convenience_ is set equal to

Po' the static liquid pressure at a fixed point on the equilibrium meniscus.

The liquid pressure at the interface is related to the gas pressure through

the surface-tension and the mean curvature of the free-surface by means of

the relation

pg - p --2_. (11)

Substitution of this relation and Po for f(t) into (9) results in

i.

l+B I__-__ll22_- B (Z+HRs) + Btr(R-HZs) cos8 - (I+B) @t 2

+ (__.__)2ll__ll2iir112]:Pg_ Poon_ : H.
(12)

The form that the mean curvature ]4 in (12) takes in surface polar normal

coordinates can be calculated from the relation (13) that for a surface defined

by F = 0

2_: - div(_ZZ___/llgra_ll)]F:O (13)

LOCKHEED MISSILES & SPACE COMPANY



The vector gradF/llgradFll is the unit normal to the surfaces F = constant,

and (13) states that the negative of its divergence when evaluated on the

surface F = 0 is twice the mean curvature of that surface. The desired

form for _ is thus obtained by taking F = I]- H(s,e;t) in (13) and using

the expressions for the divergence and gradient in surface polar normal co-

ordinate s.

The standard formulas expressing the gradient of a function F and the

divergence of a vector _ in orthogonal curvilinear coordinates specialize

in the case of surface polar normal coordinates to

and for

Fs Fe
_F _l e + e e + e (14)= --s _ h3 --n

= gl _s + g2 _e + g3_n '

to

i [(h2h3gl) s + (h3hlg2) e + (hlh2g3)_ (15)
div G = hlh2h3

where hi, h2, and h3 are the magnitudes of the derivatives of the position

vector (6) with respect to the coordinates, that is,

5r 5r Br

hI e = h2 e e and h3 e n ---s _s ' =_' =_

or

hI = i - _(ZssR s - ZsRss) = i - _/R 1 ,

h2 = R - _ Zs = R(I-_/R2)' and

h3 = 1 .

(16)

Observe that hI > 0 and h2 > 0 imply that _ < min (RI,R2_ which is

equivalent to (3). (The identity

2 + Rss 2(ZssR s - ZsRss )2 = Zss

LOCKHEED MISSILES & SPACE COMPANY



which follows from the fact that the parameter s is arc length, is useful

in evaluating hl.)

If the perturbed surface is

F(s,e,_;t) = _ - H(s,e;t) = 0 , (17)

then (14) becomes

so that

where

H H8S

=--- e - me e +e n ;
grad F hI --s h2

G

grad F h2H s

IIgra___dFII Q -s

hlH e hlh 2

Q -Q--n

l/2
Q = hlh 2 llgtad FII = [h22Hs 2 + hl2He 2 + hl2h22] •

(18)

Using (15), (17), and (18) to evaluate (13) yields the desired expression

for ##,

+ Q le Q

on _ = H(s,e;t) with hI and h2 given by (16).

Contact Angle Condition. The end condition for the free-surface boundary

condition (12) and (19) is given by specifying the contact angle between

the free-surface and the container wall. The condition that the contact

angle remain fixed at the value @ during the motion is that

cose = _nH " -wn (2o)

along the curve of intersection, where _H is the unit normal to the free-

surface pointing from the liquid into the gas and n is the unit inward
m w

normal to the container wall. The expression for _H is given by (18) when

LOCKHEED MISSILES & SPACE COMPANY



it is evaluated on the free surface _ = H(s,e;t) at the intersection with

the wall. If the equations of a meridian of the container wall are

r = x(_) and z = Y(_) ,

where T is arclength measured along the curve from the lower pole of the

container, then n is given by the expression
--W

n =-Ye +Xk
--w T-r T-

evaluated at the intersection with the free-surface. With respect to the

unit vectors of surface polar normal coordinates the expression becomes,

by use of (2),

n = (-Y R + X Z ) e s + (Y Z s + X R s) e n
--W T S T S

Substituting into (20) then yields the desired contact angle condition,

h2H s

cose = - V (-Y R s

hlh 2

+ x_-Zs)+ -C- (L-zs+ x,.Rs) (21)

along the curve(s) of intersection

R- I] Z = X , Z + I] R = Y •
S s

Kinematic Condition. The remaining free-surface boundary condition is the

kinematic condition, which connects the motion of the free surface with the

velocity potential. It is derived from the total derivative with respect to

time of the equation defining the free-surface, which is

d [_-H(s,e;t)] = Ht + gra_[_-H(s,e;t)] • grad_ = 0 on _ = H •

lO
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Expressing the gradient in surface polar normal coordinates then yields the

kinematic condition as

H _eHeS S

Ht = _ 2 2 on _ = H • (22)

hI h2

Linearization

The only nonlinearities of the problem appear in the free-surface boundary

conditions, (12), (19), (21), and (22). These can be linearized by assuming

that the perturbing Bond number Btr is small enough so that H is small

compared to the principal radii of curvature of the equilibrium free-surface_

that is,

[. i zR_._] (23)H << rain Z R - Z R
SS S S SS S

where (ZssRs - ZsRss) = Ss is the curvature of a meridian and Zs/R = sin$/R

is the other principal curvature. Neglecting the 0(_) terms in (12)(all

angular velocity terms are of this order) then yields

+ (ZssRs - ZsRss)

Z

__s_R B Z - B_ H Rs + Btr R cose
+

- (1 + B_) *t - k : 0 on _ : 0 ,

where the constant k is equal to Pg " Po = _' twice the mean curvature

at the point at which Po is evaluated (ll). The terms

Z

(ZssR s _ ZsRs s) +___s B Z - k = 0 , (24)

form the equation of the equilibrium free-surface. With these deletedj the

equation becomes

ll

LOCKHEED MISSILES & SPACE COMPANY



2

Hs)s + (ZssRs- +

+ R cose - (1 + B ) _t = 0 on _ = 0 .- B_ HR s Btr

(25)

The end conditions for (24) and (25) are found from (21). For the equili-

brium free-surface (24), where _ = 0, (21) yields the terminal end condition

Z + X RjCOS(_
YT s s=s

U

T--T u

(26a)

where s and T are the values of s and T, respectively, at the
U U

uppermost intersection of the equilibrium free-surface and the container

wall,

ZCs u) = Y(_u ) , R(s u) = X(I"u) •

If there is sufficient liquid to cover the container bottom, then the inter-

section at s = su and T = Tu is the only one, and the initial end condi-

tion is the symmetry condition about the axis of revolution, namely

Z : 0 at s : 0 . (26b)
S

If there is insufficient liquid to cover the bottom, then there is another

(lower) circle of intersection at s = 0 and T = T%_ and the initial end

condition is (26a) at s = 0 and T = T% as well. (Recall that s is

zero at the lowest point on the equilibrium free-surface -- at the axis r = 0

if there is only one circle of intersection; at the lower circle of inter-

section if there are two.)

The terminal end condition for (25) is derived from the expressions for the

unit normals at the intersection of the container wall and the equilibrium

free surface, which are

12
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T--T
U

= - sing e + cos® e
--s --n

and

-n
S----S

__--0u

respectively. The unit tangent to the container wall at the intersection

in the direction of increasing T is also required; it is

I! J = cos@ e + sin@ e
T --S --n

T=T
U

At the intersection of a meridian of the perturbed free surface _ = H(s,e;t)

with the container wall let the values of s, _, and T be denoted by Sl_

_l' and T 1. Then if X denotes the angle from e to e (alternately--r --T

from _ to _w ) so that

dn

-w = _ __d_ - d_

then the linearized expression for the wall normal is

[_] =[_w (_l-_u)<_- _7 aT]
T=T 1 T=T u

to first order. Similarly, since

de

-__nn= _ esds - ds

one obtains for the surface normal

es]
S=S S=S S=S

13
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to first order. This latter expression becomes

= - He - --e 8 + e -( d_s-s R --n ds es
S=S

=0u

when (19), with 0(_) terms neglected, is used.

The relationship between (Sl-Su), (TI-Tu), and H can be observed from a

curvilinear triangle obtained when the perturbed surface lies "above" the

equilibrium free surface, by extending the equilibrium free surface beyond

the intersection with the container wall (see Figure 2). In the triangle

with vertices at

[%,o3 : (x(%), Y(_u)) ,

[Sl, O] , and

[Sl,_z] = (X(_l),Y(_l)),

the angle at [Su,0] is 8, the angle at [Sl,0]

of the sides are sI - Su, H(Sl, e), and T1 - Tu"

is right, and the lengths

Hence, to first order

sI - su = H cot@

- = H/sin@ .and TI Tu

By substitution into the requirement that

cos8 = [nH " n j

T=T 1

one then obtains the desired linearized terminal contact angle condition

14
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d_ss dXHs sin@ + ( cos® - _) H : 0 (27a)

at s = Su, _ = 0.

When there is insufficient liquid to cover the tank bottom, then the initial

contact angle condition required at the lower circle of intersection is

similarly found to be

dd_s dXI-Is sine- ( cose- ) H:0 (27b)

at s = O, _ = O.

Finally, the linearized kinematic condition (22) is

Ht =0 . (28)

The task, then, is to solve the linear boundary value problem (7), (8), (25),

(27), and (28), where the equilibrium free-surface is defined by (24), (26),

and the given volume of liquid. In the foregoing, it is assumed that

B _ O; negative values of B_ are not considered in this study.

The Ei_envalue (Normal Mode) Problem

The linear boundary value problem posed above is inhomogeneous because of the

transverse perturbing acceleration proportional to Btr in (25). The solu-

tion can be obtained in two parts. The problem is first made homogeneous by

setting Btr to zero and solving the normal mode problem. The result is a

set of eigenfunctions that may then be used in a Fourier series expansion to

obtain the response to the transverse perturbing acceleration.

Normal Modes. Let the periodic time dependence and the angular dependence of

and H for the kth normal mode be

15
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= _k (r,z) cose cos(wkt)

H = Hk (s) cose sinCwkt) •

(29)

The e dependence chosen in (29) corresponds to the modes having one dia-

metral node excited by the lateral perturbing acceleration Btr cose. Sub-

stituting (29) into (25) with Btr = 0 and into (28) gives

and

(i + Bo_) Wk_ k - BoIRsHk +_ RHks s

 (Zss s 0
WkHk(S) = _kn(r'z) = _kn(S'O) = _kTl(S,O)

on _ =o . (3o)

The boundary conditions on Hk and _k are the one on H in (27) and

_k = 0 on w ;
n

and also, _k (0'z) = 0 and Hk(O) = 0 ,

(31)

if the liquid covers the container bottom. Solution of this problem yields

a set of eigenfunctions [_k ], eigenvalues [Wk2], and eigenmodes [Hk}.

Response to Perturbing Accelerations. For a sinusoidal perturbation of

amplitude _tr _

Btr : _tr sin(Wot) '

the velocity potential of the perturbed motion can be represented as a Fourier

series

= cose coS(Wot ) E Ak_k(r,z ) , (32)
k

16
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where the solution to the normal mode problem, _k(r,z), satisfies (30) and

(31), but not (25) and (28). Inserting the series into (25) and (28), the

free-surface and kinematic boundary conditions for the perturbed motion, and

combining the results lead to

(1+ B_)z (%2 _ ® 2)A_ : _tr_ R
k o o

on the equilibrium free-surface, r = R(s) and z = Z(s). Now, R can be

expressed as an expression in the _k evaluated on r = R(s) and z = Z(s),

R = E Dk_ k [R(s), Z(s)] . (33)
k

It can be shown that the _k'S and the corresponding _'s ' form a biorthogonal

set with the orthogonality condition,

S

u I = 0 for k / m ,,
HmR ds

/ 0 for k = m
O

where su is the length of a meridian of the equilforium free-surface, measured

from the axis when there is a single circle of intersection and from the lower

circle when there are two. Consequently, the expression for the Fourier co-

efficients in (33) take the form

S

u R2_ as
0

Dk = s " (34)

_o u _k_R ds

Thus, for sinusoidal excitation, the coefficient Ak in (32) is

A

1 Btr Dk Wo

A_ (1+ B_)_k2 - %2
(35)

and the velocity potential for the sinusoidally perturbed motion becomes

17
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Btr cose coS(Wot) Dk w° _k(r,z) . (36)
= E. 2 2

1 + B_ k wk - w o

The procedure for obtaining the solution for any periodic perturbation that

possesses a Fourier series expansion of the form

Btr = Btr E C sin(m_ot)
m m

is similar.

whe re

The solution is

= cos{) T. _k(r,z) T. Ak(m) cos(mmot ) ,
k m

(m) = Dk Btr m Cm w °

- 2 ""& (1 + Bo,)®k2

(37)

Particular perturbations of interest are the square wave and the periodic

pulsing accelerations, for which the Fourier coefficients are

C
m I O , m even

= 4
, m odd

for the square wave

and

I O , m even

= m-__! for the periodic pulse ,
Cm 4 2 m6_

(-1) sin--_- , m odd

1
where 8 is the ratio of At, the perturbing pulse width, to _ T = w/w o,

half its period (see Figure 3)-

The explicit expressions for the normal surface displacement at the wall,

the item of principal interest, are then found from (28). They are
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H] e =o

S=S
U

Hie= 0

S----S
U

,%

Btr
- sinw t

l+B o

Btr 4

l+B
k=l

Dk

z 2 2 ]z=Z(su)
k=l wk - w ° n r=R(Su )

for sinusoidal, (38)

= sin(mOot )

Dk [m=l_" m(mk 2 - m2m 2) .] _kn]Z=Z(Su)r=R(Su) for square (39)_ave_
m odd o

and
,%

Btr
H]e=0 - 1 + B

ff
s=s

U

m-1
-- m6w

_ (_1)2 sin -_- sin(mWot)

4 k_lDk[_l m(_k2 - m2Wo2) ] _k ]z=Z(s )
m odd '" r=R(s u)

(4o)

for periodic pulse perturbations.

Mechanical Analogue. For practical design applications it is convenient to

express each sloshing mode in terms of the fundamental mode of an equivalent

spring-mass mechanical analogue. To calculate the parameters of this analogue

it is necessary to obtain expressions for the lateral force and moment acting

on the container wall_ which_ in turn, can be found from the pressure. The

pressure at the wall is

pg-k-B Z-(l+B )_t _ in the liquidP = (41)

pg , in the gas ,

where the first expression is the linearized form of the Bernoulli equation

(9). When there is sufficient fluid to cover the container bottom_ the lateral

force on the wall is given by the integral

2N _L

O O

p sir_ cos@ XdT de .

This integral, which is taken over the entire container wall_ becomes_ upon

substituting (41) and discarding terms of higher than first order,
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2_ _L

Fx o o pg sir_ cose Xd_ de

2_ 7u+HCsC®

- _ _ (k + B Z) sin)<, come X dT de

o o

211" ,i"

- (I+B_) _o _o u_t minx cose Xd7 de

The e integration yields zero for the first integral and for the part of

the second between the limits 0 and 7 • Thus
U

F
X

2_

: - (_+ _zu)si=Xu csce_ Hucomede
0

- (1 + B_) _o _o u _tsir_ come Xd7 de .

For the kth normal mode one obtains, after substituting (29) and the second

of (3o),

F : <_(_+_Zu)sir_XuCSCe+ %2(i÷_) _u
_k _o @kSinXXdT]_uSin(_kt)" (42)

nu

The moment of the lateral force is given by the integral

2_

My= o

7L

_0 pX come (Y minx + X co_() dr de

which becomes simply

2_ _L

: - (1- _--)b2 _o _o pxYcose minx dTde

for the spheroidal tank with origin at the tank center (Figure la),

2O
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X cos_(
1

b2 Y sinX .

Using the same technique as above, one obtains in general

My = (1- i--)
b 2

[(k+B Zu) Si_uXuY u csc® _ Hucose de
o

T

+ (l+B)_ _oUY_t si_X cose Xd_ de ,
o

and for the kth normal mode

M

Yk :
T u

Wk2(l+B_) _ _ksir_ XYd_] _uSin(wkt).
_k -o

nu

(43)

For the case when there is not sufficient liquid to cover the container bottom,

the same procedure yields the expressions

F
x k

: _[-(_%?_)si_x_ csce_--_-(_'%#u)si_Xu°SCe

%2(I+B) _u

+ _kn u _T_ _k sir_Xd_] _u sin(wkt) '

(44)

and

M
Yk = w(1- b_)[(k+B Z_)sir_X_X_Y_csc® _ + (X+B Zu)sir_uXuYuCSC@

(451
T

_ke(a+Bot)_ u
_kn u "_ _k sir_XYdT] Hku sin(mkt )

The point of action zk on the container axis of the single force to which

the mechanical analogue is made equivalent is then the ratio
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zk = My/Fxk, (46)k

where zk is measured from the center of the tank. Because the amplitude

of the force imposed by a spring-mass oscillator, which is made equal to

• . A

the amplltude of F x , is _k x, and the amplitude of the energy is
^2 k

_k x /2, the spring constant of the analogue must be

= F2x/2vk , (47)
k

where Vk is the amplitude of the energy of the kth mode of the liquid,

m

_oU_k _kv_=5 (l+B_) _--R as

For the mechanical analogue to have the fundamental frequency tak,

must therefore be

_k - _k/_k2

(48)

its mass

(49)
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NUMERICAL ANALYSIS

The common angular variation of the velocity potential and normal displace-

ment for the kth normal mode is explicitly exhibited by the factor cose in

(29) and (30). Consequently, the domain in which the eigenvalue problem

developed in the preceding section must be solved can be taken as a radial

section of the liquid within the tank in the plane perpendicular to the

single diametral node. When the volume of liquid is large enough to insure

that the bottom is completely covered, the radial section is bounded by the

axis of revolution, the meridian of the tank, and the meridian of the free-

surface Irlgure la). When the bottom is uncovered, the radial section is a

lunar region between the meridians of the free-surface and the tank (Figure

lb).

Throughout this section of the report, when no confusion will result, the sub-

script k attached to H and _ will be suppressed to simplify the notation.

By using the relation (30), written as

_H(s) = _n(r,z) = _n(S,O) ,

the eigenvalue problem can be reformulated in terms of the kth velocity po-

tential and its normal derivative on the equilibrium free-surface. For the

bottom covered case the complete restatement follows. The velocity potential

satisfies

- (_rr + _r _r + _zz) +l _ = 0 (50)
r

within the liquid subject to the boundary conditions

--o (51)
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along the axis within the liquid,

=0
n

(52)

on the wetted tank meridian, and

1 _n + BuRs - s
R s s

- ZsRss) + ( _n

: (I+B) w2

(53)

on the equilibrium free-surface. The free-surface boundary condition (53)

is subject to the end conditions

S

at the intersection between the free-surface and tank meridians (s = su, I] = 0)

and

: o (55)
n

at the intersection of the free-surface with the axis (s = 0). The meridian

of the equilibrium free-surface is the solution to the differential equation,

Z

[(ZssR s - ZsRss ) + _] - BoZ- k = 0 (56)

subject to the boundary conditions

cose = Y Z + X Rs|JT S S=S
U

T=T
U

(57)

and

z : o (58)
S

at s = O_ that when rotated about the axis encloses a given volume of liquid

within the spheroid.
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When the fluid volume is so small that the bottom is uncovered, the axial

boundary condition (51) disappears. The end condition (55) for the free-

surface boundary condition is replaced by the constant contact angle condition

at s = O,

meridians.

[0j ---o
s

= 0, the lower intersection between the free-surface and tank

Finally the constant contact angle condition

cos® = Y_Zs + X_Rs] s=O (60)

T=T_

replaces the symmetry boundary condition (58) for the equilibrium free-surface.

The computation of the eigenvalues, _, the eigenfunctions, _, and the eigen-

modes, H, falls into three major tasks:

• Determination of the meniscus shapes defining the domains filled

by given volumes of liquid.

Development of irregular triangular meshes within the radial

sections of the liquid such that the finite difference approxi-

mations to the eigenvalue problems are symmetric.

• Solution of the approximate eigenvalue problems.

Finally, finite Fourier analyses in terms of the approximate eigensystems

yield, almost immediately, predictions of the shape of the forced response

of the liquid to lateral perturbing accelerations. Moreover, the values

needed to set up an equivalent spring-mass mechanical analog ((44) through (49))

are an easy by-product of the computation. Each of the major tasks as well

as the subsidiary calculations will be discussed in turn.
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Computation of Meniscus Shapes

The Initial Value Problems. Combining the differential equation for the

meridian of the equilibrium free-surface (56) with the relation

RR +ZZ =0
S SS S SS

derived from

2 2
R +Z =l
s s

(s is arc length) yields a 2 x 2 system with the solution

R = - CZ and Z = CR
SS S SS S

where

c = B z + X - Zsl = d Ids (61)

is the curvature of the meridian. Consequently, (56) is equivalent to the

redundant first order system

Z =W
S

W = CU
s

U = - CW
s

R =U
s

U2+W 2 = 1

(62)

in which U and W are the r and z velocity components of a point

moving with unit velocity along a curve with the function C (61) as

curvature. When C is positive, the curve curls to the left as s increases.

Because only the tangent vectors are involved in the boundary condition (57),

the difference between the z-data of the free-surface and the tank may be

absorbed in the function z = Y(_). Thus the tank may be permitted to slide
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up and down the axis of symmetry relative to the surface. A convenient

z-datum for the equilibrium free-surface when the bottom is covered is

z(o)= o . (63)

The conditions

:o, u(o)= i, and W(O)= 0

then follow from the boundary condition (58).

(64)

On the solution to the initial value problem (62), (63) and (64), there is

at least one point (there may be three) at which the boundary condition (57)

holds. Let the tank be translated so that the meridian passes through such

a point. If the segment of the solution up to a point where (57) holds lies

entirely within the tank, then the two-point boundary value problem (62),

subject to (57) and (58) with k to be determined so that the volume has a

given value V, may be replaced by the problem of choosing k so that the

rotation of the segment of the solution of (62), (63), and (64) between the

origin and a point where (57) holds encloses a given volume V.

To obtain an analogous reformulation in terms of an initial value problem

when the bottom of the tank is dry, it is convenient to choose the z-datum

for the tank so that the equation of the tank meridian is

X 2 + y2/b2 : 1 (65)

Choose an initial point

R(O) = R_ = X(T_) and Z(O) : ZZ = Y(T_) (66)

on the lower branch of (65). Re-expressing the contact angle condition (60)

in the form _ = X - @ yields
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and

_(o):_(o):[x cose+Y sine]
T='r_

w(o)--Zs(O)=[Y co_-x_sinai
'1"='I"1_

as the other initial conditions needed to define a solution of (62) as an

(67)

initial value problem.

In the family of solutions to the initial value problem (62) starting from

(66) and (67) and characterized by positive values of k, there is one for

which the boundary condition (57) holds at the first intersection with the

ellipse (65). Thus the two-point boundary value problem (62) subject to

the conditions (57) and (60) with k chosen so that the volume has a given

value V may be replaced by the problem of choosing k and either R_ or

Z_ so that the volume enclosed by the rotation of the segment of the

solution of (62), (66)_ and (67) between (R£,Z_) and the point where (57)

holds encloses a given volume V.

Qualitative Behavior of the Solutions. In two special cases the solution to

(62) subject to the initial conditions (63) and (64) can be written down.

For k = O, the solution is the straight line Z m O, for all B , because

C(O) = 0 implies C m O. Clearly the tank can be positioned sb that a hori-

zontal plane makes the required contact angle.

From (61), it follows that

Re = cos¢/C and Z¢ = sin¢/C

are an alternate form for (56) or (62). For B = O, the circle

(68)

R(#) = (2 sin#)/k and Z(_) : 2(l-cos$)/k (69)
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with radius 211k I and centered at (R = 0, Z = 2/k) satisfies (68). The

curvature of the meridian is the constant C = k/2. An easy geometric con-

struction shows that the contact angle condition determines the radius and

hence k. Thus for B = 0_ the equilibrium free-surface is a part of a

sphere so long as the circle (69) intersects the elliptical cross section

of the spheroid in two and only two points. For the spherical tank this is

the _ase for any volume; and the planar solution is the limit of the spherical

solutions as _ approaches zero.

For B > O, it can be shown that C = d_/ds is a positive and monotone

increasing function of s for 0 _ $ m w. Thus from (68) it is apparent

that for k > 0 the solution starting from _ = 0 (see (64)) lies in the

first quadrant. Moreover, the R coordinate increases with s to a local

maximum at $ = w/2 and then decreases. The Z coordinate increases with

s to a local maximum at $ = w. Because the curvature C is monotonically

increasing, (62) implies that the solution curls more and more tightly to

the left. In fact beyond $ = w, it curls so rapidly that it never crosses

the axis again but becomes globally a spiral in the first quadrant. See

Bakker (14) for such curves.

Only in the limiting case, B = O, when the solution is a sphere with con-

stant curvature_ does the solution ever return to the axis again as s

increases. For B > O, the denominator of the term Zs/R prevents the

curve from crossing the axis.

For all sufficiently large k, the solution to (62) or (68) starting from

(63) and (64) is so tightly curled in the interval 0 m $ m w that

< 2b

holds. For such cases the tank may slide along the common axis of symmetry

so that the upper branch of its cross section is tangent to the solution

near $ = w. Lowering the cross section slightly will produce a position in
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i

which the contact angle condition holds when @ is small. Decreasing k

will uncurl the solution, raise the point at which the contact angle condition

holds, and decrease the volume enclosed between the meniscus and the tank.

Thus for large k, volume is a decreasing function of k. Unfortunately there

may be, for a fixed X, several points on the solution to (62), (63), and (64)

that both satisfy the contact angle condition and the condition that the solu-

tion lie entirely within the tank. Consequently, volume V is a multivalued

function of k. However, k is single valued as a function of V.

Applying the uncurling argument to the two-circle case shows that through

each initial point (R_,Z_) there is at least one solution to (62), (66), and

(67) that satisfies the contact angle condition. What is not clear is whether

there may be more than one.

The One Circle Algorithm

The Basic Procedure. For a fixed Bond number, the meridian of a meniscus that

has a single circle of intersection with the tank is determined by specifying

k/2, the curvature at the axis of symmetry when the initial point of the

meridian is the origin. The shape of a spheroidal tank with equatorial semi-

axis unity is specified by the eccentricity e of its polar cross section or

by its polar semi-axis b = (1 - e2) 1/2. Testing is facilitated by fixing

the center of the tank at (O,0,b) so that its cross section in the plane of

i the meniscus meridian is the ellipse

2
r + ((z-b)/b)2 = i (70)

that passes through the origin and is tangent to the meniscus meridian there.

At each step in the numerical integration of (62), the basic procedure is to

slide the tank cross section down along the axis of symmetry, common to the

ellipse and the meniscus meridian, until the former passes through the point

just generated on the latter. With the ellipse so positioned there are two

questions to be resolved.
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(i) Does the meridian so far developed lie entirely within the

ellipse?

(2) Could the contact angle condition be satisfied within the integra-

tion step just completed?

If both answers are affirmative, the basic procedure concludes by cubic inverse

interpolation for the value of s at which the contact angle condition holds

and by calculating the cosine of the contact angle achieved, the volume V

included between the adjusted meniscus and the tank, and the derivative

dV/dk.

Testin G for Inclusion. Were the meridian of a meniscus to intersect the tank

at its equator and to satisfy the contact angle condition there,

R s = cos¢ = sin@ would hold. So long as

R > sine (71)
S

holds, an intersection between the two meridians (tank and meniscus) at which

the contact angle condition holds must lie on the lower branch of the ellipse.

When (71) fails, a satisfactory intersection must lie on the upper branch.

In the latter case, the algorithm computes the distance

Q = z - z = b(1+ [1o 2]I/2)- z (72)

along the line r = R between the terminal point of the meniscus (R,Z) and

the upper branch of the fixed ellipse (70). A negative Q shows that the

meniscus meridian has escaped from the fixed ellipse and is an indication

that the integration should be terminated. If the curvature k/2 of the

meniscus exceeds the curvature of the ellipse at the origin, a nonnegative

Q suffices to guarantee that the entire meniscus lies within the ellipse.

This has been the case for all menisci with satisfactory intersections on the

upper branch within the range of eccentricities, Bond numbers, and volumes

considered in this report. Consequently, detailed checking for inclusion
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along the upper branch has not been included in the present version of the

algorithm.

For intersections along the lower branch of the ellipse, where (71) holds,

the situation is more complicated. The algorithm computes the distance

e : z- z : b(1- [i-_2]I/2)- z

along the line r = R between the terminal point of the meniscus and the

lower branch of the fixed ellipse (70) and maintains a maximum of the values

of P previously computed, namely

p : max [p]
m [O,s-_s]

for a positive _s less than the length of the last integration step.

Because P = 0 at s = O, P _ O.m

If

P _ P (73)
m

holds, then translating the fixed ellipse downward through a distance P

will still leave the meniscus point at which P was attained on or below
m

the tank meridian. Thus when (73) occurs, the algorithm ceases, testing and

returns to the meniscus integration.

If

P > P (74)
m

holds, then translating the fixed ellipse downward through a distance P will

put all previously computed meniscus points above the translated tank meridian.

Provided the mesh spacing is small enough,

dP/ds : cos$(tanX-tan@)
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will be positive throughout an integration interval that contains a point

s at which the contact angle condition is satisfied because the inequality

X > _ must hold not only at s but also in a neighborhood thereof. Con-

sequently, P evaluated at s will also exceed P . Thus with small mesh
m

intervals it suffices to check (74) at the end of an integration step.

Testin_ the Contact An_le Condition. Four functions derived from the relations

X = ¢ + e and $ = X - e (75)

by taking sines and cosines are used to test for the satisfaction of the

contact angle condition. For example, a point s at which

or

Fl(S) : sinX -(sin¢ cose + cosy sin®)

FI(S) = Y - (R s sin@ + Zs cos@)

has a zero is a point at which the contact angle condition (75) is satisfied.

It is an appropriate test function to use when

aq/ds--X aT/as

is large so that the change of sign of FI between the ends of an integration

interval is easily detected numerically. So long as small puddles are not in

consideration, F 1 may be used when 1 > R s > 2-1/2 holds. There are two

principles for choice among F1 and its three analogues. First_ the deriva-

tive must be large; second, difficulty in evaluating the function up to the

final subtraction must be avoided. Each test function derived from the

relation ® = X - _ violates one of these two principles.

Because the sine is monotone increasing in [O,w/2], the inequality

Y = sinX > sine = Z (76)
T S
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is equivalent to the inequality

derived from (75). These inequalities hold not only at the point where the

contact angle condition is satisfied but also in a full neighborhood of such

a point. Provided that the integration intervals are so small that a compu-

ted meniscus point terminating an interval within which the contact angle

condition is satisfied is within the neighborhood in which (76) holds, it is

safe to use the failure of (76) as a criterion for discontinuing the testing

procedure. (Practical experience shows that this is safe except near the

equator, for example, when R, Y , and Zs all exceed .99.) The basic pro-

cedure can be visualized by sliding the tank up and down along the axis of

symmetry, common to the tank and the meniscus, until the tank meridian passes

through the current terminal point of the meridian.

The Strategy. When, for a fixed tank and Bond number, the detail of the

relation between k and V, the volume enclosed by the meniscus, is still

not determined, the basic procedure may be used to survey all possible points

on the meridian at which the contact anglecondition holds. For such a

survey the numerical integration continues until the meridian satisfies one

of three conditions that guarantee no further points at which the contact

angle holds:

(1) The current terminal point lies beyond the line R = 1.

(2) The distance Q (72) has become negative.

(3) The meridian has passed beyond the point where it has a second

horizontal tangent, $ _ _.

By carrying out such a survey for a suitable set of k, enough points on

the curve representing k as a function of V can be determined to permit

iterating toward the k which correspond to a given set of V via secant

interpolation. When k is so close to the value corresponding to a given
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V that, in a neighborhood of the goal, V is a single valued function of

k and IdV/dk I is neither too large nor too small, convergence is speeded

by choosing the next value of k via Newtonian extrapolation.

Very near the equator, k as a function of V resembles an extremely flat

parabola and large changes in volume correspond to very small changes in k.

Consequently_ determining menisci which end near the equator is numerically

difficult. Nevertheless, the strategy described above, occasionally refined

by using double precision arithmetic and extremely fine mesh spacing_ with

some human intervention, successfully determined 195 of the 196 menisci

attempted in the survey reported here.

The Two Circle Algorithm

Here it is convenient to fix the elliptical tank cross section in the position

of (70). The starting point (66) for the meniscus meridian on the lower branch

of the ellipse may be specified by giving either RZ = X(T_) or Z_ = Y(_).

Choosing the latter as parameter leads to simpler derivatives to evaluate;

however, this may not be the best choice. The contact angle prescribes the

initial direction of the curve via (67). To complete the specification of the

putative meridian, a guess for the value of k is needed.

The initial points on the meridian are computed from the power series expan-

sion of R and Z as functions of s, k, and ZZ about the'initial point.

The numerical integration is then straightforward and is continued until the

vertical distance Q (72) between the solution and the fixed ellipse turns

negative. The point at which the putative meridian crosses the ellipse is

determined by inverse cubic interpolation. The cosine of the contact angle

achieved_ the volume enclosed between the meridian and the tank_ and the

derivatives needed for the various alternative imProvement schemes are also

computed.

The most desirable of the alternates is to improve the guess for ZZ and k

by a two-dimensional Newtonian iteration scheme with the goal of simultaneously
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satisfying the contact angle condition and the requirement that the volume

have a prescribed value. Sometimes it worked. More often it diverged, but

in so doing frequently gave information about the volume and contact angle

at nearby starting points. Another alternate, which proved useful when the

contact angle was far from being satisfied, is to fix Z_ and to improve k

until the approximation to the contact angle condition is satisfactory and

then to try the Newtonian iteration again.

From the experiments in attempting to develop a systematic way for choosing

starting values, enough information was gained about the relation between k

and Z_ for each of the thirteen two-circle cases in the survey to permit

the computation of meniscus shapes of comparable accuracy to those produced

automatically for the one-circle cases.

Were there a reason to construct a good two-circle algorithm, it would seem

that a combination of the second alternate with the secant interpolation used

for the one-circle case followed by a two-dimensional Newtonian iteration

when the volume was well bracketed might succeed.

Variable Mesh Spacing

In the one-circle case the mesh spacing along the free-surface near the axis

need not be fine. However, when the surface is highly curved, fine mesh

spacing is needed near the tank wall to represent the surface accurately.

Moreover, by making it possible to pack mesh triangles into long thin regions,

finer mesh near the tank wall has helped produce satisfactory irregular tri-

angular meshes.

The penaltyterm in the discretization error for using unequal mesh spacing

is proportional to the difference in lengths between adjacent intervals. Thus

meshes with intervals in a geometric progression minimize the penalty and allow

a wider mesh spacing at one end of a mesh than at the other without materially

increasing the number of points or incurring an unusually large discretization

error at any point.
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It is a simple exercise to verify that the Lagrangian interpolation coefficients

on such a mesh can be expressed in terms of the constant ratio between adjacent

intervals and the length of one of the intervals, say the first. The Adams

integration methods can be obtained by integrating a Lagrangian interpolation

polynomial (with equal mesh spacing) over the first interval in the interpola-

tion for the corrector and over the next interval for the predictor. Conse-

quently, when Adams type integration formulas are derived from a Lagrangian

interpolation polynomial on a mesh with intervals in a geometric progression_

it turns out that the coefficients are constants times the length of the

leading interval. Thus replacing an equal mesh by one in a geometric pro-

gression as the basis for an Adams type integration requires the following

additional work: a multiplication to form the current mesh length and two

extra multiplications per integration step per equation (assuming a single

correction), one each for the predictor and corrector sums.

The computation of the constant coefficients for a geometric Adams method is

easy, provided that the mesh ratio is near i, as it should be. Here where

order four is used, the computation involves solving two three-by-three

systems accurately. Because this computation is so simple, it is relatively

easy to change the mesh ratio. To switch from one mesh ratio to another,

four reeomputations of the geometric Adams coefficients are needed. Such a

procedure facilitates the development of the triangular meshes for two-circle

cases where it is desirable to pack triangles into the two corners. As to

accuracy for the cases at hand the geometric Adams methods are only a little

less satisfactory than the ordinary Adams methods.

Mesh Generation

The second major task is the development of a suitable irregular triangular

mesh within half an axial cross section of the liquid-filled region. The

goal is to obtain a mesh nearly free of obtuse triangles -- none near the

free-surface or upper tank wall. In a regular triangular mesh, lay off along

a horizontal line the number of mesh points to be used on the equilibrium

free-surface; at the left end point draw a line downward to the left; at the
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right end point leave just one triangle in the corner and again draw a line

downward to the left; finally close the figure by another horizontal line.

This parallelogram is the logical diagram; the mesh lines in the interior

and on the boundary are mapped into curved lines in the interior and on the

boundary of the half cross section of the liquid-filled region (logical into

real free-surface) by a numerical algorithm. In addition to the number of

mesh points on the free-surface and the number of mesh lines parallel to the

free-surface_ the mesh spacing along the free-surface may be varied to force

more triangles into the corner near the contact angle. The details of the

mesh are controlled by prescribing the location o_ some of the physical

images of the logical boundary points. The cemputing mesh points are the

intersections of the curved mesh lines within and on the boundaries of the

half cross section.

Figure 4 shows an irregular triangular mesh used in this study. The free-

surface and the tank wall, from the axis to the point where only two triangles

meet at the wall, correspond to the longer, horizontal sides of the parallelo-

gram; the axis and the remainder of the wall correspond to the slanting sides.

The darker lines in the interior are the images of an integral, rectangular

coordinate system used to locate vertices in the regular triangular mesh. By

mentally distorting the mesh so that all triangles are equilateral, the user

can recover a picture of the underlying logical diagram.

The ellipse with eccentricity e and unit major semi-axis

2 )2r + (z/b =l (77)

in the _ = r + iz plane is mapped onto the unit circle in the w = x + iy

plane with the origin going into the origin and the real axis onto the real

axis by the complex function

w = k 112 sn [(2K/I"0 arc sin(C/e)] (78)

38

LOCKHEED MISSILES & SPACE COMPANY



where k is the modulus and K the real quarter period of the Jacobian

elliptic function sn. (15'16_17) The terminology here follows the NBS

Handbook of Mathematical Functions.... (18) The inverse map

w/kl/2

_ = e sin[(_/2K)_o ([l't2][1-k2t2])-_2 dt_
(79)

which carries the unit circle back into the ellipse involves an elliptic

integral of the first kind. The evaluations of the elliptic functions and

integrals needed to effect (78) and (79) are made by algorithms derived from

those of Bulirsch [19) and the computation of the complex inverse sine follows

1%

w n.(2°)

Using (78) to map the meridian of the free-surface

C(s)= + i z(s)

into the unit circle produces, from the half cross section of the liquid

filled region bounded by a part of an ellipse, a standardized domain bounded

by a piece of the unit circle. Figure 5 shows the standardized domain for

Figure 4. A triangular mesh is produced within the standardized domain by

using an algorithm described by Winslow. (21) The computing mesh (Figure 4)

is generated by applying the inverse map (79) to the standardizedmap

(Figure 5).

An obvious advantage of the standardized domains is the ease with which points

and distances on the unit circle may be described in terms of a central angle.

The decisive advantage is that experience gained in producing a suitable mesh

in one standard domain may be immediately applied to the development of meshes

within similar standardized domains. Thus meshes developed for spherical

tanks, where no mapping is necessary_ have frequently served as time-saving

models of meshes for spheroidal tanks with moderate eccentricity. Because

(79) preserves angles locally but not in the larger scale of the mesh tri-

angles, a mesh that is satisfactory in the standardized domain may not be so
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when mapped into the original elliptical domain. The converse may occur.

Consequently, the practical procedure is to control the mesh by prescribing

the location of some boundary points on the standardized domain and to

decide the acceptability of the mesh in terms of the number and location of

the obtuse triangles that appear in the final computing mesh.

As an example consider Figure 6, the computing mesh, and Figure 7, the

standardized domain, for a typical two-circle case. In the lower tip of

Figure 7 there is a cluster of obtuse triangles near the free-surface,

marked by "0" at their centroids. These disappear in the computing mesh,

Figure 6.

The logical domain for a two-circle case is an isosceles trapezoid built

from equilateral triangles with its longer side corresponding to the free-

surface. The obtuse triangles that are marked on Figure 6 are associated

with the two corners of the trapezoid where only two triangles meet at a

boundary point. In Figure 4 there is exactly one such obtuse triangle in a

similar location. Further adjusting of the input parameters may remove such

triangles. However, experience shows that the expenditure of effort is un-

warranted. Improvement comes slowly with change and more objectionable obtuse

triangles at the free-surface frequently appear as a consequence of the readjust-

ment.

Figure 6 shows a discernable discontinuity of the mesh spacing along the tank

boundary at the equator. Following the broken line parallel to the darker

broken lines from the equatorial point on the tank boundary to the free-

surface locates the equatorial point there. Close examination of the mesh

spacing along the free-surface will indicate that it decreases in both

directions from the equator and in part accounts for the desirable crowding

of mesh triangles into the tips of the half cross section. The broken line

connecting the images of the equatorial points in the logical domain de-

composes the isosceles trapezoid into two unequal "right" trapezoids which

resemble the logical diagrams used in the previous report._4)t_ The user
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prepares input for each half of the logical diagram separately. This input

is rotated by w/2 to the left in a special input program to allow main

mesh generation routines to operate unchanged, and a special output program

rerotates the mesh by _/2 to the right to the position illustrated.

The procedures used to control the mesh within the standardized domains are

described in the previous report. _4)'_ They include prescribing the location

of certain control (mesh) points on the unit circle, the number of mesh

intervals in the group to be constructed between control points, and the

length of the first interval of such a group. Whenever the data permits,

the length of the mesh intervals in a group form a geometric progression;

otherwise, they are equally spaced. In addition to the parallelogram used for

Figure 4 and the isosceles trapezoid used for Figure 6, the program permits

using the right trapezoid as in the previous report. _4)"_ Moreover, such

domains may be stacked on top of one another, provided that the right edge

of the stack is along a mesh line slanting downward to the left and provided

the left edge has no segments along horizontal mesh lines.

All meshes required in this survey can_ in principle, be generated by the

procedure described above. Additional programming is still needed to give

more control over the location of mesh points along the unit circle to produce

satisfactory meshes for some domains that are characterized by having free-

surface and tank meridians of nearly equal length and relatively small center-

line depth. One difficulty to be overcome is already exhibited in Figures 4

and 5. The fine mesh along the upper part of the circular boundary in Figure

5 maps a more widely spaced mesh along the periphery of the ellipse.

Solution of the Approximate Ei_envalue Problem

The Matrix Approximations. The introduction of surface polar normal coordi-

nates results in a new form of the free-surface boundary condition (53) and

new and easily interpretable constant contact angle conditions (54) and (59).

With
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Q(_):BRs+(l/R2)-[(ZssRs-ZsRss)2÷ (Zs/R)2_

(53) may be written as

( Ojs)s• oR n
= (l+B_)w2_ (8O)

Let t I and t2 be mid-points of two adjacent mesh intervals [Sj_l,S j]

and [sj_sj+l]. Integrating (80) with respect to R ds over the interval

[tl,t2] yields the "balance" equation

-_JSls=t2 + _JS]s=tl

+

t2 t2

_tlQ(S ) _n R ds = (l+B)w2 _tl _ R ds

and applying the'usual two-point approximations for the derivatives and making

one-point approximations for the unknown functions in the integrals yield

the finite difference equation

R(t 2) R(t 2) R(t l) t2

nj+ 1 Sj+l-S j nj \Sj+l-S j sj-sj_ 1 /

R(t I)

B.-S
nj-i 0 j-i

t2

= _j(l+B ) w2 _ R ds

tI

(81)

with the two integrals to be approximated during the integration of the free-

surface. Applying the same argument over an interval [tl, sj] _ with sj = S _

adjacent to the tank wall yields in view of (56) the finite difference

equation
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n.
J

+

S .

 t3])
t 1 s=s u

- R(tl) =¢ (I+B) w2-sj
n.s.-s j Rds

j j j-i tI

(82)

as the analogue to (81) incorporating the constant contact angle boundary

condition. For the two-circle case_ applying the same argument over an

interval [O,t2] , with s. = O, adjacent to the tank wall yields a finiteJ

difference equation similar to (82) but incorporating the constant contact

angle condition (59). Observe that all of the quantities needed to evaluate

the difference equations (81) and (92) can be obtained in the course of the

integration of the free-surface.

Assembling the difference equations and dividing by (I+B) yields a

matrix-vector equation

T__ n - KA_=O (83)

where

and _n are vectors of values approximating the potential and its

normal derivative at mesh points in the free-surface;

k is an approximation to w2;

A is a diagonal matrix whose entries are i/2_ times the

areas of the zones used to approximate the free surface; and

T is a tridiagonal, symmetric, irreducible matrix that approxi-

mates the differential operator on _ in the free-surface
n

boundary condition.

The matrix T is positive definite for all cases in this study with

B _ i; it is positive definite for all but one of the two-circle cases

studied with B = 0; and it fails to be positive definite for all but one

of the one-circle cases studied with B = O.
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The remainder of the matrix approximations are described in detail in the

previous report. (4) The only difference occurs in the two-circle case; the

condition _ = O on the axis is replaced by the condition _n = 0 on the

tank wall at one end of each mesh line. However, a brief sketch of the

arguments is included here.

At each interior mesh point the operator (50) has a seven-point finite

difference approximation connecting the potential values at six neighboring

points to the value at the central mesh point; at nonaxial boundary points

a similar approximation using only points within the closed domain can be

derived, provided the normal derivative is known. (21'22'23) On the free

surface, (83) provides the missing normal derivatives. Let D be the

matrix approximating (50) with _ = 0 on the axis and _ = 0 on the walln

and the free-surface. Set S-1 = 2AT-1A. Partition the vector of potential

values as _ = [_2,_1 IT --the components of _2 are values of _ not on

the free-surface. When D is partitioned conformally with _, the finite

difference approximation to the normal mode problem takes the form

Ii 2

12

which emphasizes the role of the free-surface.

(84)

For meshes consisting entirely of acute triangles, the matrix D is symmetric,

irreducible, positive on the diagonal, nonpositive off the diagonal, diagonally

dominant and has at most seven nonzero entries in each row. Violent deviations

from acuteness change the properties of D and affect the final results markedly;

small departures from strict acuteness away from the free-surface have little

effect. The matrix S inherits its properties from T; it is tridiagonal,

symmetric, irreducible and for most cases in this study positive definite.

Because (84) can be reduced to a generalized eigenvalue problem of the form

[A - kB] _ = O, standard theory guarantees, when B is positive definite,
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that (84) has solutions [k_,_k] , k = 1,2,...,n, where n is the number of

points on the free-surface.k 24)

When S fails to be positive definite_ the numerical evidence so far

obtained and the form of S support the conjecture that it has precisely

one nonpositive eigenvalue and that the others are positive. If this

is the case, working in the space orthogonal to the eigenvector corresponding

to the nonpositive eigenvalue should restore the property of the preceding

paragraph with n reduced by one.

The Modified Wielandt Inverse Iteration. Factor the matrix S into left

and right triangular factors, S = LR, by a Cholesky decomposition modified

when the product of diagonal entries is negative to set the left diagonal to

the negative and the right diagonal to the positive value of the square root

of the absolute value of the offending product. When S is positive definite,

no modification is necessary and R = LT. When S fails to be positive

definite here_ the modification takes place only for the final diagonal entries.

Multiply (84) on the left by

[: t °1insert I =
O 0 L-I

between the matrix and the vector in (84), and carry out the matrix multipli-

cations to get an equivalent linear system

[ I I
RDI2 RDIIL - z

= 0 (85

where Z = _2 and z = L-I_I. As in the usual Wielandt inverse iteration (25)

the one modified to take advantage of the form of (.85) starts from a guessed

eigenvalue X (°) and a guessed eigenvector z(°). The latter is improved

by solving the linear system
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D22

RDI2

D21L I [y (I)_ 0
(86)

The guess for the eigenvalue is improved by computing the Rayleigh quotient

z(1)_[_Dll_ z(l)
k(I) =- - + RDIs_X(1)_ (87)

l
(1)_

Z Z

and k (I) and z (I) replace k (°) and z(°) as the starting values for

the next step in the iteration. The form of the linear system (86) accounts

for the speed of the iteration. Because the leading entries in the right

side are zero, when the system is solved by a factorization method, only a

portion of the downsweep need be carried out. Moreover, because all the non-

zero entries in RD_ 2 are in the right portion of the matrix product, the up-
l (i) have

sweep may be discontinued as soon as the corresponding values of

been computed.

-(1)/z(°)i for some fixed i, has
The iteration continues until the ratio _i / i "

grown so large that no further improvement can be obtained (10 +5 is the value

usedhere)or untiitherelativeerror(_(o)__(1))/_(1)is so sman that

further improvement is unlikely (10 -4 seems suitable for the present problems).

When the iteration converges, the approximate potential throughout the tank

_2 = _ is computed to obtain the values along the tank wall needed to evaluate

the lateral force and moment integrals. The approximate eigenmode H is

produced by solving the linear equation

A _H: (_1/2/2)z (88)

and the approximate potential on the free-surface is determined by the matrix

multiplication

q01 =L _z .
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When S is not positive definite and k is negative, the square root in

(88) is set to one because the eigenmode makes no sense.

Problems with B@ = O. On physical grounds the fundamental eigenvalue should

be zero for B = 0 when the tank is spherical. A finite-difference approxi-

mation to a continuous problem can at best yield an approximation to a zero

eigenvalue. It can be shown for the one-circle problems that zero is not an

eigenvalue of the approximate problem. Here the first approximate eigenvalue

is small and positive for V = i/8 and small and negative for V = 7/8. For

V = 1/2 the approximation seems to be "too good"; the program quits under

circumstances that suggest that the lowest eigenvalue of the finite differ-

ence approximation is zero to within machine accuracy. Unfortunately time

has not permitted modifications to the program that would verify this hypo-

thesis.

By continuity, the fundamental eigenvalue is expected to be small for the

other spheroidal tanks. For all but one of the single circle cases with

B = 0 tried in the nonspherical tanks_ the program produced an approximation

for the fundamental eigenvalue. These values are small and uniformly negative.

The exceptional case seems to be another example of "too good" an approxima-

tion, like V = 1/2 in the spherical tank. In two-circle cases with B = 0

the program produced complete eigensystems; in one case, V = 1/4, e = O. 5,

the fundamental eigenvalue turned out to be small and negative and in another,

V = 5/8, e = 0.8, very small and positive. At a fixed volume, as the

eccentricity of the tank increases, the fundamental eigenvalue also increases.

The pressing and unsolved problem here is to tell Which of the small funda-

mental eigenvalues are truly nonzero. As eigenvalues of the finite differ-

ence problem approximating the continuous problem, they are only slightly

less accurate than those in the remainder of the study, which are uniformly

numerically acceptable. The question, therefore, would seem to center on the

discretization error committed in passing from the continuous to the finite

difference problem.

47

LOCKHEED MISSILES & SPACE COMPANY



In principle, the program can and sometimes does produce some of the higher

eigenvalues in the one-circle cases with B = O. When it fails to do so,

it consistently slips back into the fundamental--even when provided with

extremely large guesses for the eigenvalues. This circumstance suggests

that modifying the construction of the starting eigenvector used in the

Wielandt inverse iteration would improve the performance of the program for

B_ = 0. The fact that the chief difference between the one- and two-circle

programs lies in this area reinforces this view.

Evaluation of the Forced Response

In principle, if enough frequencies _k and corresponding eigenmodes Hk(S)

are known_ the shape assumed by the perturbed free-surface H(s,e;t) in response

to a periodic lateral perturbing acceleration which has a Fourier series

expansion of the form

= ^ sin(n_ot)Btr Btr EmC m

can be calculated by evaluating the series

coseBtr Cm

H(s,e;t) = (I+B) _Wk Dk Hk(S)_wk2m2Wo2 sin(mw°t)

that follows from (37) with D k given by (34).

(89)

= = 0 for m > l_ theFor sinusoidal perturbations, where C 1 1 and Cm

inner sum in (89) disappears and the evaluation of the sum over k is straight-

forward provided that wk _ w o. The numerical problem is to be sure that

truncating the sum to the small set of natural frequencies and eigenmodes

available does not omit a physically significantpart of the response. For

other perturbations, the evaluation of the inner sum presents an additional

practical problem. The terms of largest magnitude in the sum over m usually

occur for values of m near Wk/Wo, and this ratio grows rapidly with k.

A feasible procedure for this initial survey is to carry each sum so far

48

LOCKHEED MISSILES & SPACE COMPANY



beyond the neighborhood of _k/Wo that there is no question of the convergence

of the inner sum.

Thus the main question about the results here is whether enough terms have

been included in the outer sum (89). With only 25 mesh intervals on the free

surface_ the accuracy of the representation of higher eigenmodes may be

questioned. Consequently, five eigenmodes were used for the majority of the

cases. The choice of five was also based on the fact that_ with 44 mesh

intervals on the free surface, doubling the number of eigenmodes from four

to eight (and halving the time step) revealed no significant change in the

computed response.

Granted that H(s,0;t) can be evaluated satisfactorily, the question arises

of when and where the maximum excursion produced by a given forcing function

appears. An approximation to the desired answer can be given by computing

H(s_0;t) for a large number of values of t and noting the time at which

IH(s,_t)l achieves its maximum amongthe values computed. In the present

survey 30 time steps within 3/8 of the period of the fundamental or 60 time

steps within 1/2 of the period of the fundamental are used. The shape of

the perturbed surface is plotted at the time of the observed maximumand at

intervals of 5 time steps going away from the maximum in both directions.

The period of the fundamental was chosen as the unit of time to give a

uniform time scale for varying forcing frequencies w •
o

Because H(s,O;t) represents the deviation of the perturbed surface from the

equilibrium free-surface in the normal direction, this deviation is added

vectorially to the free-surface to produce a graph of the perturbed surface

shape in the plane e = 0 at each time plotted (cf. Figure 19). To save

the user the trouble of reflecting the shape in the equilibrium free-surface,

the reflected shape in the plane e = w is also plotted on the same graph.

The plotted values are normalized so that the maximum amplitude of the observed

^ cose/(l+B )setequalto l) is equaltoresponse ((89 computed with Btr

1/lO of the length of the free-surface (su = s ). Thus the amplitude of themax
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transverse Bond number reported in the plots is the value computed from the

re lat ion

Smax/10= max 1 (s,o;t)1•
s,t

This normalization is adopted to give the plots a large enough scale to make

meaningful detail visible and at the same time prevent normals from crossing

within the distance Smax/10 of the free-surface (see (3) and (23)). Thus

the free-surface can be surrounded by a grid consisting of four parallels at

distances of _ 1/10 and _ 1/20 of sma x. In addition the normals through

every fifth point on the free-surface starting from sma x are drawn and

labeled.

The question of whether or not the tank meridian should also be included in

the plot can be argued either way. When it is present, it clutters the graph

but does serve to emphasize that the present study is limited to small

amplitude analysis and that the scale of the plots in the normal direction is,

arbitrarily, set large to reveal detail of the computed perturbed shape.

Clearly the perturbed surface cannot cross the tank wall and must extend to

the wall when the displacement is positive at sma x.

The present program can certainly be used (with caution) to determine whether

the computation of the perturbed shape is of enough practical dse to warrant

further refinement.

Evaluation of the Mechanical Analo_ Parameters

Because

and

Z=2_

:Y :bX/tl_e2jl.2.,Z.,/,
T
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the lateral force for the two-circle case (44) may be rewritten as

with

and

;x = b_ [-C_H(o)- CuH(Su)

+ w(I+B )(sTu[(_X2)/(I-e_2)I/23 dT)H(Su) i

C_ = 2_3 • _X csc@/(l-e2X2)ST=T _
S=O

Cu = 2_ " IX csc@/(l-e_2)ST=_
S=S U

U

(9o)

If C_

as well.

is set to zero, (90) represents F
x

for the one-oircle case (42)

The coefficients C_ and Cu

the final integration of the equilibrium free-surface.

approximation to the integral in (90) is

T

Su d,=Zj%

must be computed at the beginning and end of

A natural form for the

(91)

where J is the set of indices that pick out values of the potential on the

tank wall from the vector of potential values at all the mesh points. The

set J and the corresponding weights w. must be determined while the entries
J

in the matrix D are being assembled. However, the final evaluation of the

integral must wait until the potential is generated.

Because the tank wall is approximated by straight lines between mesh points,

a mid-point approximation seems appropriate. Let (XI,YI) and (X2,Y2) be two

adjacent mesh points on the tank wall with @_ and @v as corresponding

potential values. Set
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and

x : (xI + x2)/2

At:[(x2-Xl)2+ (Y2-Yl)2]I/2"

Then the approximation

j_(_x2)/(l-eh2)1/2]d_

"--(_ + _V) XJ AT/2(I-e2XJ) 1/2

contributes the weight

2 AT/2(I_e2X 2) 1/2 (92)x m

to each of the weights w_ and wv in (91). Each w._j except at the ends

of the tank meridian, is the sum of two terms of the form (92). An analogous

procedure is used to compute the moment (43) or (45).

Because the potential is normalized so that @T S-1 _ = i, it turns out that

v :_/2 (I+B)_ _n R ds : _(l+B)w2/4•
0

Thus the evaluation of the remaining mechanical analog parameters (46), (47)_

(48), and (49) is straightforward.
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RESULTS AND CONCLUSIONS

The Method

The problem of low gravity sloshing in spheroidal tanks has previously

been investigated by approximate mathematical methods and by experimental

methods. Even when surface tension forces are negligible_ approximate

solutions of the governing equations are the only ones possible. (9'lO'll)

No attempts have been made thus far to apply these methods to the case in

which surface tension forces dominate the liquid motion. Experimental work

has, with one exception, been limited to the case of zero surface tension,

and even there physical limitations prevented experimentsunder conditions

where surface tension actually dominated the liquid behavior. This report

is the first attempt to study lateral sloshing in spheroidal tanks under

such conditions.

The highly curved free-surface shapes characterized by large departures

from the horizontal plane are accurately computed here by numerical means

properly accounting for the equilibrium contact angle and, by iteration,

the liquid volume in the spheroidal tank. Solution of Laplace_s equation

in the domain occupied by the liquid subject to appropriate boundary con-

ditions at the tank wall and the free surface is accomplished using a

finite difference technique on an irregular triangular mesh. Such a mesh

is space filling allowing accurate approximation of curved tank and free-

surface boundaries. The basic restriction inherent in the finite-difference

approximation is that the contact angle be nonzero.

Demonstration that the computer program can feasibly produce the desired

numerical calculations is a major result of this work. The basic program

used in this project is an adaptation of one previously developed (4)"" for

calculating low-g lateral sloshing in hemispherically bottomed cylindrical

tanks. The principal output from the program includes:
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2

i. Normal mode eigenvalues wk ;

2. Normal mode eigenfanctions _k ;

3. Normal eigenmodes Hk ; and

4. Fourier coefficients, Dk •

These have been used to compute, as a Fourier series expansion, the response

to sinusoidal, square wave, and periodic pulse lateral perturbing accelera-

tions and to compute the lateral force and moment imposed on the tank by

the liquid in kth mode lateral sloshing. Where appropriate, the force and

moment can be used to compute parameters of an equivalent spring-mass system

to facilitate engineering computations.

The Present Study

The data reported here is a survey of small amplitude linearized sloshing

in spheroidal tanks of eccentricity 0, 0.5, 0.68, and 0.8 with axial Bond

number B ranging from zero to lO0 and relative liquid volume ranging from

1/8 to 7/8 of the tank volume. All calculations have been carried out for

a fixed contact angle of 5 degrees consistent with previous work, k4)_ which

allows adequate representation of small-contact-angle low-g liquid sloshing

behavior while keeping numerical difficulties inherent in the method for

very small contact angles minimal.

Figures 8-14 show the meniscus shapes considered in the study. At the higher

Bond numbers, the liquid cross section ranges from a flat puddle in the tank

bottom to a deep body enclosing a flattened bubble at the top of the tank.

At the lower Bond number, the liquid free-surface extends from the lower

into the upper hemispheroid; and, at sufficiently small liquid volume and

Bond number, the bottom of the tank is uncovered, the liquid being found in

an annular region around the equator.

2
Eigenvalues _k--

The variation of first mode (fundamental) eigenvalues as a function of Bond

number B and liquid volume is shown in Figure 15 and Table I. The first

mode eigenvalue el 2 generally increases with Bond number and liquid volume

for a given tank shape. The behavior of _l 2 , observed here, as a function
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of liquid volume for B_ = lO0 and e = 0 is consistant with the known

behavior (i) of _l 2 in a spherical tank for B_ = _ (the case of zero

surface tension). For B _ 5 and e = 0 , the values of _k 2 in Table I

replace the values reported earlier (4,5) for cases in which the liquid lies

entirely within the lower hemisphere. The new values are consistently higher

and are more reliable because they are based upon the exact constant contact

angle condition ((27a) or (54)) rather than upon the approximation used in the

earlier computations for the hemisphere. For B_ _ 2 and e = 0, the effect

of the approximation in the hemisphere appears to be negligible. (Because the

constant contact angle condition used on the vertical wall was exact, the data

reported earlier (475) need be replaced by the present values only for B _ 5

and e = 0 , cases with large Bond number and with small fill levels in which

the liquid lies entirely within the hemispherical bottom.) The fundamental

eigenvalue _i 2 for B_ = 0 , e = 0 is zero. (That it is exactly zero can

be deduced from physical considerations. The computational results presented

in Table I are, subject to the discretization error, considered to be consis-

tent with this value.)

indicates that _i 2 is very nearly zero in spheroids with e _ 0Table I also

when the meniscus intersects the tank wall in only one circle and in some cases,

when it intersects it in two. In other two-circle cases, characterized by small

fill level and large eccentricity, 812 is well away from zero. Note also that

first mode eigenvalues for the two-circle cases do not fall on the curves in

Figure 15. This may be explained as follows. Physically, lateTal slosing in

the one-circle and two-circle cases is much different. In one-circle cases, the

motion is essentially lateral from one side to the tank to the other; the eigen-

modes are all odd. First mode sloshing in two-circle cases is circumferential

with liquid moving from one side of the tank to the other circumferentially;

higher modes are characterized by an almost vertical motion in each side of the

tank, and both odd and even modes (i.e. an odd or even number of equilibrium

free-surface crossings) must be considered.

The first five eignevalues _k 2 for all cases considered are listed in Table

I. Note that all eigenvalues for a given tank shape - Bond number combina-

tion increase with liquid volume V except for the two-circle of intersection

55

LOCKHEED MISSILES & SPACE COMPANY



cases where the higher eigenvalues decrease as liquid volume increases.

Dimensional sloshing frequencies _k can be obtained from values in Figure

15 or Table I from the relation

=% .

The centerline depth of liquid under the meniscus and other meniscus geometry

may be obtained from Figures 8-14.

Eigenmodes Hk

The normal departure of the free surface from its equilibrium shape is shown

in Figures 16-19 for six representative cases. Low Bond number and high Bond

number shapes are shown in Figures 12 and 13 to illustrate the influence of

tank shape on the eigenmodes. It is observed that the first eigenmode for the

smaller Bond numbers is generally convex up in the region 0 _ s < s (Hlmax) '

where Hlmax is the maximum value of H1 ; whereas_ by contrast, H1 is

generally convex down in down in this same region for Bond numbers greater

than 10. The dependence on the first eigenmode shape is not otherwise

(except for two-circle cases) greatly affected by changes in tank shape_

liquid volume, or Bond number.

Response to Lateral Perturbations

Practical application of the results of the present analysis centers on the

response of the liquid to lateral perturbing accelerations. The response to

sinusoidal perturbing accelerations is given by

A

Btr _ Dk_k
Hle=0 =_- sinwot _ _ Hk(S) (93)

k=l u_-w °

where Dk_ defined by (34)_ is the Fourier coefficient in the expansion

R = E Dk_ k.

For all cases in the survey_ the quantities needed to evaluate (93) at
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s = su (at the intersection of the tank wall with the equilibrium free surface)

are tabulated for the first five modes: _k 2 in Table I, Dk in II, and

Hk(Su) in llI. (For cases in which the liquid lies entirely within the

hemispherical bottom, the present tables should be used, as pointed out above,

rather than those reported earlier (4,5).)

The forcee response co sinusoidal_ square wave, and periodic pulse lateral

perturbing accelerations has been calculated for representative cases. In each

case the transverse Bond number has been chosen to yield a maximum value of H

equal to i/iO of su = Sma x • Surface-normal coordinates (s,H) where s is

arclength along the free-surface and H is the displacement normal to the free-

surface are used in plotting (see Figure 19). On each plot a surface-normal

coordinate grid surrounds the free-surface. The lines of constant H in the

grid are the parallels to the free-surface at H = ± Smax/lO and H = ± Smax/20

to show where the response reaches the maximum and half the maximum excursion.

The lines of constant s are the normals to the free-surface drawn through

s = 0 , s = Sma x , and every fifth mesh point starting from Sma x . The

normals are labeled with their s-coordinates.

The computed response of the liquid to a sinusoidal perturbing acceleration

for the two-circle case B = i, V = 3/8, and e = 0.8 is shown in Figure

19. The response shown has a maximum excursion from equilibrium of i/i0 of

s • The magnitude of the transverse Bond number required to force the
U

response to have this amplitude is given. The simple form of (93) allows

easy computation of the response to sinusoidal lateral perturbin_ accelera-

tions of different magnitudes and at different ratios of perturbing to

fundamental frequency. The plot of eigenmodes for this case is also included.

The response of the liquid to any periodic lateral perturbing acceleration

is given by

Btr _ _ C sinm_ t

HIe= 0 = _ kZ__I Dk_kHk(S ) mE__ _._.mm2w 2°
i k- o

(94)

57

LOCKHEED MISSILES & SPACE COMPANY



where the C's are the coefficients of the Fourier series expansion of the
m

lateral acceleration. The response of liquid to square wave and periodic

pulse perturbing accelerations for the same case is shown in Figures 20 and

21 for a forcing frequency 7/10 the fundamental eigenfrequency. Four plots

are presented in each case showing the motion in the first half cycle leading

to an amplitude approximating the maximum. In the last plot for each case,

the maximum departure of the free-surface from its equilibrium shape is 1/lO

the length of a meridian of the free-surface. The magnitude of the transverse

Bond number Btr resulting in this displacement is noted on each plot. The

response near the maximum to sinusoidal, square wave and periodic pulse per-

turbations is given for the case B_ = 5, V = 3/4, and e = 0 in

Figure 22, and similarly for the case B = 5, V = 3/4, and e = 0.8 in

Figure 23 and for B_ = 2, V = 3/8, and e = 0.68 in Figure 24.

The convergence of the series expansion for the forced response to sinusoidal

lateral perturbations depends mainly on the requirement that the forcing

frequency • be markedly different from the natural frequencies w k. For
o 2

< the growth of wk with k enforces the convergence and the fivewo w I ,

terms from Tables II and III are generally sufficient to give three signifi-

cant figure accuracy.

More limitations must be imposed on the evaluation of (94). The inner series

involving the C's is clearly convergent, depending only on the ratio
m

Wo/_ k. However, the dominant term may occur far out in the series if

Wk/W ° closely approximates an integer found in the definition of the

C 's. (In the case of square wave and periodic pulse perturbations, only
m

odd integers are important in this connection.) Moreover, resonance can

occur if w° is a submultiple of w 1. It may be concluded that this method

of finding the response to lateral perturbing accelerations must be used

with caution in each specific case so that difficulties arising from sub-

multiple resonances may be identified and avoided.
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The Mechanical Analog

Much emphasis has in the past been placed on finding simple approximations

to the lateral sloshing of liquids in tanks such as equivalent pendulums or

spring-mass oscillators which, in principle, impose the same force on the

tank as does the sloshing liquid. Such models are also useful in physically

interpreting the results of studies like the present work. Mechanical analog

parameters for first mode sloshing are shown in Figures 25-28. The lateral

force obtained by integrating the component of the pressure force acting

horizontally in the e = 0 direction is presented in Figure 25. The spring

constant of the spring-mass oscillator producing lateral forces equivalent

to first mode sloshing is shown in Figure 26. The lateral force action point

is shown in Figure 27. This quantity gives the required attachment point

of the spring-mass oscillator to produce the proper moment about the center

of the tank.

Note in Figure 25 that the lateral force imposed by the liquid as it moves

to the right (i.e. in the e = 0 direction) is negative for smaller values

of B . This result arises from the fact that the liquid pressure near the

free-surface is less than that over the liquid. The integral of this pressure

depression is embodied in the first term on the right hand side of (42). It

is observed that it is negative (i.e. it acts in the e = w direction) and

offsets the inertial behavior of the liquid embodied in the second term in

(42). As the Bond number increases, the first term diminishes_ compared to

the second. When B = =, only the second term found in similar analyses

restricted to the case of zero surface tension remains. For the higher

values ofkBond number considered in this study the lateral force is always

positive.

The spring constant and the mass are always positive as a consequence of

(47) and (49). Because of this, the spring constant is plotted only in the

region where the lateral force is positive. The mechanical analog is not

considered valid when a positive displacement of the right hand limb of the

free-surface results in a negative force (i.e. one directed to the left in

Figure 1).
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The magnitude of the mass in the mechanical analog may be obtained from (49)

w I

The attachment point of the equivalent mechanical oscillator giving the

proper moment is presented in Figure27. It is observed from (43) that the

net moment imposed by liquid sloshing in a spherical tank is zero. Heuristi-

cally, this is easily confirmed by noting that the moment of pressure forces

acting anywhere in the tank is always zero because an elemental area at any

point in the tank is normal to a radius vector from the center of the tank.

This is not true, however, in spheroidal tanks of nonzero eccentricity. It

may be observed that a positive pressure acting on an element of the tank

wall to the right and below the tank's center produces a generally negative

moment (i.e. one tending to turn the tank in the clockwise direction).

Negative pressures characteristic of the lower Bond numbers will produce

generally positive moments, hence the positive value of zI noted at the

smaller liquid volumes. Increasing liquid volume allows a greater hydro-

static pressure which has a greater negative moment. Thus for larger liquid

volumes, the net moment will be negative and the value of zI also negative.

The discontinuity between negative and positive values of zI corresponds

to the point where the lateral force in Figure 25 is zero.
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Triangular Mesh Used for B_ 30, V = %/8, and e = 0.68

Figure 4
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Conformal Map of Figure 4 into the Unit Circle

Figure 5

64

LOCKHEED MISSILES & SPACE COMPANY



Triangular Mesh Used for B_ = i_ V = 3/8 and e = 0.8

Figure 6
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Conformal Map of Figure 6 into the Unit Circle

Figure 7
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Meniscus Shapes at B_ = 5 for T_
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APPENDIX A

SYMBOL LIST

Quantities are nondimensional unless otherwise designated. When appropriate,

the relation between a dimensionless variable and the physical dimensional

one, which is topped by a bar, is given.

vectors.

English Alphabet

a

A

Ak

(m)
Ak

b

B

Btr

B

C

c1

C
m

C
U

D

Dk

Underlined variables are generally

-Dimensional semi-_jor axis of container. The character-

istic length with respect to which the variables are made

nondimensional.

-Diagonal matrix whose entries are areas of zones on free

surface;

-Matrix in generalized eigenvalue-vector problem.

-Coefficient of _k in Fourier expansion of perturbed

velocity potential.

-Coefficient of _k c°s(mWot) in Fourier expansion of

perturbed velocity potential.

-Semi-minor container axis = $/a.

-Matrix in generalized eigenvalue-vector problem.

-Transverse time-varying Bond number = pgtra2/_.

-Amplitude of Btr.

Bond number = pga2/_ (assumed non-negative).-Axial

-Curvature of meridian of equilibrium free-surface.

-Contribution of lower intersection to F .
x

-Coefficient of sin(m_ot ) in Fourier expansion of periodic

perturbation.

-Contribution of upper intersection to F .
x

-Matrix approximating the Laplace equation within the liquid

with zero normal derivative on the equilibrium free-surface

and w and zero potential on the center line.

-Fourier coefficient in the expansion of R in terms of

_k "
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e
--n

e
--r

e
--S

e e

e
--T

f

F

F
x

gi

gtr

g_

G

h.

1

H

k

K

k

L

m

M
Y

_nH

n
-w

P

Pg

-Eccentricity of an ellipse.

-Unit vector in _ direction.

-Unit vector in r direction.

-Unit vector in s direction.

-Unit vector in e direction.

-Unit vector in T direction.

-Arbitrary function of time = [a/(pa)] !/2 f.

-A generic function of convenience.

-Lateral force = Fx/Ca.

-i th component of _ in surface polar normal coordinates.

-Dimensional time-varying lateral acceleration (positive

when acting in direction of increasing x).

-Dimensional steady axial acceleration (positive when acting

downward).

-A vector function.

-Mean curvature of free surface = a_.

-Signed scalar magnitude of derivative of position vector

with respect to ith coordinate direction, i = 1,2,3.

-See capital eta.

-Modulus (k2 = m, where m is the parameter of a Jacobian

elliptic function).

-Real quarter period of a Jacobian elliptic function.

-Unit vector in z direction.

-Left triangular factor of the matrix S.

-Index, particularly in Fourier sine expansion of perturbing

acceleration.

-Moment of lateral force = </_a 2.

-Equivalent mass for mechanical analogue for kth mode =

(l+B_)_k(a3p ) •

-Unit vector normal to free surface.

-Unit vector normal to container wall.

-Pressure = pa/_.

-Gas pressure = pga/_._
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PO

P

P
m

Q

r

R

R1

R2

r

s

s
m_x

S

sn

t

tI

t2

T

U

v

V

-Static liquid pressure at a fixed point on equilibrium

free surface = Poa/a.

Distance from (R,Z) to upper branch of ellipse along

r =R.

-P = max(P:O < s < s - 8, 0 < 6 < As).
m

-Distance from (R_Z) to lower branch of ellipse along

r=R;

-Coefficient of _ in the free-surface boundary condition;
n

-A function of convenience.

-Radial coordinate = r/a.

-Radial coordinate of point on equilibrium free-surface

meridian = R/a;

-Right triangular factor of the matrix S.

-Principal radii of curvature of equilibrium free-surface

=  l/a, %/a.
-Radius vector from origin of tank fixed coordinate system

= Z/a.

-Arc length along equilibrium free surface meridian = s/a.

-Symbol for s on plotted output.
u

1 ]
-Tridiagonal matrix S = _ A-1TA --

-A Jacobian elliptic function.

-Time : [(I+B )_l(pa3)] I/2 _;

-Dummy variable.

-s-coordinates of mid-points of two adjacent mesh intervals.

-Tridiagonal matrix approximating the free-surface boundary

operator _;

-As superscript denotes transposition;

-Period of Btr = [(l+B )a/(pa3)] 1/2 T.

-R s in system of first order differential equations for

meridian of equilibrium free-surface.

-Fluid velocity : V_ : [(I+B )ol(Pa)] -I/2 __"

-Volume = V/(4na_/3).
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Vk

w

wj

W

x

X

X

y

z(l)

Y

z

zk

(o)
z

z(1)

Z

Greek Alphabet

6

8jk
As

At

AT

C

H

8

e

-Energy amplitude of kth mode = V_(_a2).

-Denotes container wall;

-Complex variable.

-Weight in integration formula.

-Z in system of first order differential equations for
s

meridian of tank wall.

-Cartesian coordinate = r cose = x/a

-Maximum lateral mass displacement of mechanical analogue

= i/a.
-Radial coordinate of point on container wall meridian

= _/a (measured from polar axis).

-Vector of approximations to _ for mesh points not on

free-surface.

-Improved approximation for _.

-Axial coordinate of point on container wall meridian

= _/a (measured from equatorial plane).

-Axial coordinate = _/a.

-Vector of approximations to _ on the free-surface.

-Axial coordinate of action point of mechanical analog

= zk/a (measured from the tank center).

-Initial guess for z.
n

-Improved approximation for z.

-Axial coordinate of point on equilibrium free surface

meridian = Z/a.

-Ratio of periodic pulse width to half period to the per-

turbing acceleration.

-Kronecker delta = 1 if j = k, otherwise = O.

-Mesh spacing on s .

-Perturbing pulse width.

-Mesh spacing on w.

-A complex variable.

-Normal coordinate = _/a.

-Normal coordinate of free surface = H/a.

-Angular coordinate

-Contact angle.
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_k

P

_L

_j

_2

_k

n

×

W

wk

O

Q
i

-Spring constant for mechanical analogue for kth mode

=
-Pressure difference across a fixed point on the equili-

brium free surface = Pg-Po;
2

-Approximation to the eigenvalue w •

-Guessed k in Wielandt inverse-iteration.

-Improved k in Wielandt inverse-iteration.

-Integer index.

-Integer index.

-Dimensional liquid density.

-Dimensional surface tension.

-Arc length along container wall meridian = _/a.

-The length of a container meridian from pole to pole

=_L/a.

-Approximation to _ at the jth mesh point.

-Vector of approximation to _.

-Vector component of _ for points on equilibrium free-

surface.

-Vector component of _ for points not on equilibrium

free-surface.

-Velocity potential = _(l+B)_a/p] -I/2

-_ for kth normal mode.

-_/_n.

-Angle between radial direction and container wall meridian.

-Angle between radial direction and equilibrium free surface

meridian.

-Frequency = [(I+B )_/(pa3)] -1/2 _.

-m of kth normal mode.

-w of periodic Btr.

-Angular rotation rate of tank-fixed coordinate system

=
-Euclidean vector norm
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Combining Subscripts

j -Index, usually for points and values belonging to boundaries.

k -Index denoting kth normal mode.

-Denotes lower circle of intersection, if any, of equilibrium

free-surface and container wall.

m -Index, particularly in Fourier sine expansion of perturbing

acceleration;

-Also denotes mean or maximum.

n -Denotes differentiation in the exterior normal direction.

tr -Denotes transverse (lateral) direction.

u -Denotes uppermost intersection of equilibrium free-surface

and container wall.

w -Denotes container wall.

-Denotes the axial direction.
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